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This document describes our freely distributed Maple library SPECTRA, for Semidefinite Programming
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which symbolic infeasibility or feasibility certificates are required.
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1. Introduction

Given symmetric matrices Ag,Aj,. .. ,A, of size m with rational coefficients, let
S ={xeR":Ax)  =Ag+Aix; +---+Ax, =0}

denote the corresponding convex spectrahedron, defined by the linear matrix inequality (LMI)
enforcing that A is positive semidefinite, or equivalently that the eigenvalues of A, as functions
of x, are all non-negative. Spectrahedra are a broad generalization of polyhedra [21]. Like poly-
hedra, spectrahedra have facets, edges and vertices. However, while the facets of a polyhedron
are necessarily flat, the facets of a spectrahedron can be curved outwards or inflated, see Figure
1 for an example of a spectrahedron of dimension n =3 defined by an LMI of size m =5.
Optimization of a linear function on a spectrahedron is called semidefinite programming
(SDP), a broad generalization of linear programming with many applications in control engi-
neering, signal processing, combinatorial optimization, mechanical structure design, etc, see
[20,22]. The algebra and geometry of spectrahedra is an active area of study in real algebraic
geometry, especially in connection with the problem of moments and the decomposition of
real multivariate polynomials as sums-of-squares (SOS), see [1,11,17] and references therein.
SDP-based methods have recently been developed in the setting of error analysis of roundoff
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Figure 1. A spectrahedron.

during floating-point computations, see [3,12], or in non-commutative real algebraic geometry,
see [4,10].

Our software SPECTRA aims at either proving that . is empty, or finding at least one point
in ., using exact arithmetic. Indeed, SPECTRA is exclusively based on computations with exact
arithmetic. This is in sharp contrast with existing SDP solvers which are based on approximate
computations and floating point arithmetic, such as the projection and rounding heuristics of,
for example, [16] or [9], the primal-dual interior-point SDP solvers in SeDuMi [19] or NCAlge-
bra [7], or the implementation in arbitrary precision arithmetic of the interior-point SDP solver
in SDPA-GMP [13,23]. Since exact computations are potentially expensive, SPECTRA should be
used when the number 7 of variables or the size m of the LMI are small. It should not be consid-
ered as a competitor to numerical algorithms such as interior-point methods in terms of practical
performance when the input has large size (measured by matrix size and number of unknowns).
Finite or multiple-precision implementations of the interior point method can handle examples
of LMI that are unreachable by SPECTRA.

However, SPECTRA should be primarily used either in potentially degenerate situations, for
example when it is expected that .’ has empty interior, or when a rigorous certificate of
infeasibility or feasibility is required. In these situations, finite precision or arbitrary precision
implementations of interior point methods are not able to guarantee the existence of a feasible
solution and hence to solve the associated LMI rigorously. For instance, the tests performed in
[13, Sec.V] on ill-posed instances from SDPLIB [2] show that the absence of interior point leads
to numerical instabilities.

We describe now how we represent exactly the solution of an LMI. The input provided to
SPECTRA is the set of matrices Ag,A,...,A, with rational coefficients describing the pencil A
and hence the spectrahedron .. If .% is empty, SPECTRA returns the empty list. Otherwise, the
output generated by SPECTRA 1is a finite set

_ {(%(Z) 2@ qa(2)
' q0() 90" " qo(2)

):q(z)ZO,zeC} (1)

described by a collection of univariate polynomials with integer coefficients ¢,qo,q1,...,q, €
Z|z] and such that 2 meets . in at least one real point x*. Such a description is called a ratio-
nal parametrization. It allows to isolate the (generally irrational) coordinates of x* in rational
intervals of length given a priori, as small as required.
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If .7 is not empty, SPECTRA is guaranteed to compute a point x* minimizing the rank of A in
. It solves exactly the (non-convex) optimization problem

r(A) :=minrank A(x) 2)
st.xe 7.

This is in sharp contrast with interior-point methods which are designed to compute a point of
maximal rank. As detailed in Section 2, the rank of the matrix A(x*), respectively the algebraic
degree of the entries of A(x*), can be certified exactly by SPECTRA. This cannot be achieved with
classical approaches via interior-point methods, even in arbitrary precision arithmetic.

The outline of the remainder of the paper is as follows. In Section 2 we survey some back-
ground material and extract the essential theoretical results of [8,14] on which SPECTRA relies.
In Section 3 we provide instructions to download and install SPECTRA, and we illustrate its use
on two elementary examples. More advanced examples are described in Section 4. The perfor-
mance of SPECTRA on larger examples is reported in Section 5. Finally, in Section 6 we describe
formally the exact input and output syntaxes of SolveLMI, the main function of SPECTRA.

2. Background material and main theoretical results

The algorithm implemented in SPECTRA computes points in the determinantal varieties
9, .= {x € C": rank A(x) < r}
forr =0,1,...,m — 1. By construction it holds
Do C D C- Dt
Since the determinant of A vanishes on the boundary 9.7 of ., it holds
0. C 9,1 NR".

When .7 is not empty, the value r(A) of the optimization problem (2) is the minimum integer r
such that Z, N R" intersects ., namely the smallest rank on the spectrahedron. Our main geo-
metrical result [8, Theorem 2] states that the spectrahedron contains at least one of the connected
components of the real part of the determinantal variety of smallest rank:

THEOREM 1 (Smallest rank on a spectrahedron) Assume that . is not empty. Let € be a con-
nected component of Py NIR" such that the intersection € N .7 is not empty. Then € C ./
and hence € C (Dra)\Dray-1) NR".

As a consequence of this result, an algorithm computing at least one point in each connected
component of Z,4) N R" will compute at least one point in the spectrahedron .. Since the value
of r(A) is not known beforehand in general, SPECTRA proceeds iteratively by computing at least
one point in the real determinantal variety &, N R" for increasing values of the expected rank
r=0,1,....m—1.
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More specifically, SPECTRA computes points in the determinantal varieties &, by projecting
onto the subspace of x variables the incidence varieties

¥ = {(x,y) € C" x C"" ™ : AX)Y(y) =0, rank Y (y) = m — r}

for r=0,1,...,m— 1. The reader familiar with SDP duality will recognize the classical
complementarity conditions, see, for example, [20,22]. The dual matrix

Yig o o Yim—r
Y(y) = :

ym,l tt ym,m—r

depends linearly on the dual variables y, and some normalization constraint should be added
to ensure that rank Y (y) = m — r. Unlike Z,, the incidence variety 7, up to genericity condi-
tions on the pencil A, turns to be smooth and equidimensional. This crucial geometric property
allows for the application of a recursive method which is guaranteed to find at least one point in
each connected component of the incidence variety. This leads to the main algorithmic result [8,
Theorem 3] on which SPECTRA relies:

THEOREM 2 (Exact algorithm for finding a point in a spectrahedron) Suppose that for each
r=0,1,...,m— 1,the incidence variety ¥, is smooth and equidimensional and that its defining
polynomial system generates a radical ideal. Suppose also that the determinantal variety 9, has
the expected dimension n — (m 72r+1). Then, there is a probabilistic algorithm that takes A as input
and returns:

(1) either the empty list, if and only if .* is empty, or
(2) avector x* such that A(x*) = 0, if and only if the linear system A(x) = 0 has a solution, or
(3) a rational parametrization q,qo,q1,- - - qn € Z|[z] such that there exists z* € R with q(z*) =
0 and:
® A(q1(Z)/qo(@),- . ,qn(z*)/qo(z*)) = 0 and
e rank A(q1(z%)/qo(2"),. .. .qn(z")/q0(z")) = r(A).

The probabilistic nature of the algorithm comes from random changes of variables performed
during the procedure, allowing to put the sets &, in generic position.

Recall that the incidence varieties %, are defined by enforcing a full column rank constraint
on the dual matrix Y (y). In SPECTRA this is achieved as follows [8, Section 3.1]: given a subset
of m — r dinstinct integers between 1 and r, we enforce the submatrix of Y (y) whose rows are
indexed by these integers to be equal to the identity matrix of size m — r. For a given value of r,
there are (’f) distinct choices of row indices and hence the same number of normalized incidence
varieties. For each value of r, the algorithm in SPECTRA processes iteratively these normalized
incidence varieties.

Finally, let us explain briefly how SPECTRA is able to certify the correctness of the output. This
explanation was not included in our paper [8], but we believe it is useful for readers interested
in the implementation details. For each computed solution (x*,y*) belonging to a connected
component of an incidence variety, SPECTRA uses exact arithmetic to decide whether A(x*) is
positive and to evaluate the rank of A(x*). If A(x*) is not positive , then the point x* is discarded.
From Theorem 1 we know that at least one computed point x* lies on the spectrahedron .#, and
this point is of minimal rank, that is, it solves problem (2).
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We first build the following characteristic polynomial:
s> p(s.x) = det(sh, + AR) = 5" +p1 (08" + -+ Pt @ + p (),

where I, is the identity matrix of size m. The coefficient p;(x) € Q[x] has degree k in x and it
is the kth elementary symmetric polynomial of the eigenvalues of A(x), for k = 1,...,m. For
example, p;(x) is the trace of A(x) and p,,(x) is the determinant of A(x). This computation is
done only once.

Let x* € R” be given. The rank defect of A(x*) is equal to the number of consecutive zeros in
the sequence p,,(x*),pm—1(x*),... Moreover, by Descartes’ rule of signs, A(x*) > 0 if and only
if pp(x*) > 0 forall k = 1,...,m. Hence, computing exactly the rank of A(x*) and checking its
positive semidefiniteness amounts to determining the signs of p(x*) fork =1,... ,m.

Whereas this sign determination is a delicate issue when using floating arithmetic and approx-
imate computation, it can be done exactly with SPECTRA, since we represent the point x* with a
rational univariate parametrization with coefficients in Z. Indeed, suppose that x* belongs to the
finite set 2 described as in (1) by the integer coefficient polynomials ¢,qo,q1,. . . ,g,. Together
with the rational intervals isolating each entry of x*, SPECTRA computes rational intervals isolat-
ing each coefficient p (x*). Each isolating interval is gradually reduced, until it is so small that at
the interval bounds the coefficient takes (1) distinct signs, in which case it vanishes somewhere
in the interval, or (2) the same sign, in which case it does not vanish in the whole interval.

3. Getting started

SPECTRA is freely available as a library for Maple version 16 and above. It can be downloaded in

the form of single binary file SPECTRA .mla from the following page
homepages.laas.fr/henrion/software/spectra

SPECTRA relies on FGB, a library for fast computation of Grobner bases, whose Maple interface
must be installed, see [6]. SPECTRA does not work without FGB.

In a Maple worksheet, from the directory containing the file SPECTRA.mla, please type the
command

> with(SPECTRA);

to activate the main function SolveLMI.

3.1 Half disk

Let
1+ X1 X2 0
Ax) = X 1—x; O
0 0 X1

with n=2 and m = 3. The corresponding spectrahedron
S =xeR:AX) >0 =xeR*: 1 —x} —x}>0,x >0}
is a half disk. To find a point in ., we use SPECTRA as follows:

> A := Matrix([[l+x1, x2, 0], [x2, 1-x1, 0], [0, O, x11]):
> SolveLMI(A);
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([x1 =110, 0], x2 = [1, 111]

This returns the point
x=1[0,1]1¢ .

in interval arithmetic notation, that is,
X] € [O’O]’ X2 € [191]

and for each component in x we obtain rational (exact) lower and upper bounds. Here the bounds
coincide as the point has rational coordinates.

At this point, matrix A(x) is guaranteed to have minimal rank over all points in .. This rank
can be obtained as follows:

> SolveLMI (A, {rnk});
[[x1 = [0, 0], x2 = [1, 1], rnk = 1]]

3.2 Degenerate spectrahedra

Let us modify the bottom right entry in the matrix of the previous section, so that now

1 + X1 X2 0
Alx) = X3 1 —x; 0
0 0 X1 — 1

and the corresponding spectrahedron . = {x € R? : A(x) > 0} = {[1,0]} reduces to a point in
the plane. SPECTRA can easily deal with such a degenerate case:

> A := Matrix([[1l+x1l, x2, 0], [x2, 1-x1, O], [0, O, x1-111):
> SolveLMI(A);
[[x1 =11, 1], x2 = [0, 0]]]

Now let us modify further the bottom right entry, letting

14+ x; X2 0
Alx) = X 1—x 0
0 0 xp—2

so that the corresponding spectrahedron is empty. SPECTRA returns the empty list, and this is a
certificate of emptiness:

> A := Matrix([[1l+x1l, x2, 0], [x2, 1-x1, O], [0, O, x1-211):
> SolveLMI(A);
[]

Since SPECTRA is based on exact arithmetic, it is not sensitive to numerical roundoff errors or
small parameter changes:

> A := Matrix([[1l+x1l, x2, 0], [x2, 1-x1, 0],
[0, 0, x1-1-10"(-20)11):
> SolveLMI(A);
[]
> A:=Matrix([[1l+x1l, x2, 0], [x2, 1-x1, O],
[0, 0, x1-14+410"(-20)11):
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> SolveLMI(A);
[[x1 = [36893488147418995335 / 36893488147419103232,
4611686018427401391 / 4611686018427387904],
x2 = [-350142318592414077 / 2475880078570760549798248448,
-2801138548739304423 / 19807040628566084398385987584 1]

Displayed with 10 significant digits, the latter point reads:

. 3689348814741899533 4611686018427401391
. 36893488147419103232 7 4611686018427387904

. —350142318592414077 —2801138548739304423
? 2475880078570760549798248448 " 19807040628566084398385987584

~ —0.1414213562 - 10~°.

:| ~ 1.000000000,

The above point is an irrational solution, and the rational intervals are provided so that their
floating point approximations are correct up to the number of digits specified in the Maple
environment variable Digits, which is by default equal to 10. Use the command

> Digits:=100:

prior to calling SolveLMI if you want an approximation correct to 100 digits. At the
price of increased computational burden, SPECTRA then provides larger integer numerators and
denominators in the coordinate intervals.

4. Examples

4.1 Irrational spectrahedron

In general, each coordinate of a point computed by SPECTRA is an algebraic number, that is, the
root of a univariate polynomial with integer coefficients.
For the classical univariate matrix

1 X1 0 0

% 2 0 0

A =10 0 24 2
0 0 2 x

the spectrahedron reduces to the irrational point x; = +/2. The simple call

> A:=Matrix([[1l, x1, O, O], [x1, 2, O, O], [0, O, 2xx1, 2],
[0, 0, 2, x1]]):
> SolveLMI(A);
[[x1 = [26087635650665550353 / 18446744073709551616,
13043817825332807945 / 922337203685477580811]

returns an interval enclosure valid to 10 digits. We can however obtain an exact representation
of this point via a rational parametrization:

> SolveLMI (A, {par});
[[x1 =[..]1, par = [_2"2-2,_2Z,[2]]1]]
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The output parameter par contains three univariate polynomials ¢, qo,q; such that the computed
point is contained in the finite set

Z ={q1)/q0() : q(z) =0} = {2/z: 2> — 2 =0} = {++/2}

as in (1). Here obviously the rational interval isolates the irrational point x; = V2.

4.2 Algebraic degree

The algebraic degree of SDP was studied in [15]. Let us consider the spectrahedron of Example
4 in this reference, for which

1+X3 X1+ x2 R%) X2 +X3

X1+x2 1—x1 x2—2Xx3 X7
X v—x3 l4+x x+x;

X + X3 X2 xi+x3 1 —x;

Alx) =

The following point can be easily found with SPECTRA, and it has rank 2, which is guaranteed to
be the minimal rank achieved in the spectrahedron:

> A:=Matrix([[1l+x3, x1+x2, x2, x2+x3], [x1+x2, 1-x1, x2-x3, x2],
[x2, x2-x3, 1+x2, x1+x3],
[x2+x3, x2, x1+x3, 1-x3]1]):
> SolveLMI(A, {rnk});
[[x1 = [29909558235590963953/36893488147419103232,
29909558235593946897/36893488147419103232],

x2 = [-18555206088021567643/36893488147419103232,
-9277603044010395249/184467440737095516161,
x3 = [-12556837519724045701/36893488147419103232,
-12556837519723709525/36893488147419103232],
rnk = 21]]

With the following instruction we can indeed certify that there is no point of rank 1 or less:

> SolveLMI(A, {}, [1]);
[]

The command
> SolveLMI(A, {par});
returns the following rational univariate parametrization (1) of the above rank 2 point:

q(z) = 161447'° 4+ 351602° + 145367° — 1769077 — 16278z° — 20012° + 15562
+4547° 4232 — 47— 1
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go(2) = 1614402° + 316440z% + 11628827 — 123830z° — 97668z° — 10005z
+ 62247° + 13627° + 467 — 4

q1(z) = 972487° + 1461447° — 1819277 — 1348267° — 633027 + 4048z* + 67587
+ 8467 — 497 — 14

¢>(z) = 344567° + 375167° — 873477 — 221507° — 82237° — 39787* — 13247°
+104z% + 103z 4 13

¢3(z) = —35160z° — 290727* + 53070z" + 651122° 4 10005z — 93367* — 31787
— 184z% + 3627+ 10

The degree of the polynomial ¢ in this parametrization can be obtained with the command
> SolveLMI(A, {deg});

We can obtain more points in the spectrahedron as follows:

> SolveLMI(A, {all, rnk, deg}, [2]);

This returns 4 feasible solutions of rank r =2, all parametrized by the above degree 10 polyno-
mial. Notice that this degree matches with the algebraic degree of a generic SDP problem with
parameters (m,n,r) = (4,3,2), which is 10 according to [15, Table 2].

4.3 Reproducibility

Consider the matrix

1—X1

AG) = [1 —;:I X2 ]

modelling the unit disk. Two consecutive calls to SolveLMTI return two distinct points:

> A:=Matrix([[1l+x1,x2],[x2,1-x1]1]):
> SolveLMI(A);
[[x1 = [-21201056044062027875/36893488147419103232,
-662533001376936933/11529215046068469761,
x2 = [-7548363607018988253/9223372036854775808,
-1887090901754742967/230584300921369395211]
> SolveLMI(A);
[[x1 = [-10862500438565607907/590295810358705651712,
-21725000877131177215/1180591620717411303424],
x2 = [-576363141759828805/576460752303423488,
-9221810268157244495/922337203685477580811]]

After another call, or on your own computer, these intervals should still differ as SPECTRA makes
random changes of coordinates to ensure that the geometric objects computed are in general
position. This kind of behaviour is expected when there are infinitely many points of minimal
rank in the spectrahedron.

To generate reproducible outputs, the instruction randomize can be used to seed the random
number generator used by Maple:

> randomize(31415926):
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> SolveLMI(A);
[[x1 = [-35204733513421104993/36893488147419103232,
-35204733513421000447/36893488147419103232],
X2 = [-2758579864857623899/9223372036854775808,
-5517159729715231413/18446744073709551616]11
> randomize(31415926):
> SolveLMI (A);
[[x1 = [-35204733513421104993/36893488147419103232,
-35204733513421000447/36893488147419103232],
X2 = [-2758579864857623899/9223372036854775808,
-5517159729715231413/18446744073709551616]11

4.4 Convex quartic

Let
1 + X R%) 0 0
_ X2 1 —x; X2 0
A(X) o 0 X2 2 + X1 X2
0 0 X2 2 — X1

The spectrahedron . = {x € R? : A(x) > 0} is the region whose boundary is the internal oval of
the smooth quartic determinantal curve {x € R? : det A(x) = 0} represented in black in Figure 2.
With the following instructions

> A:=Matrix([[1l+x1,x2,0,0],[x2,1-x1,x2,0],[0,x2,2+x1,x2],
[0,0,x2,2-x1]]):

> SolveLMI(A,{},[31);

> SolveLMI(A,{},[31]1);

> ...

we compute several points on the boundary of .7, they are plotted in Figure 2. Note the third
input argument [ 3] which specifies to SolveLMI the expected rank of the computed point.
Since the determinantal curve is smooth, we know that the rank of A(x) equals 3 on the whole
curve, and in particular on the boundary of .. Since the rank is specified, SPECTRA does not have
to process iteratively the incidence varieties corresponding to points of smaller ranks, thereby
reducing the computational burden to find at least one point in the spectrahedron.

Each of these points is represented by a rational univariate parametrization of degree 12,
obtained with the instruction

> SolveLMI (A, {par},[3]1);

For example, for the point (x;,x;) &~ (—0.9689884394, —0.2434013983) the polynomial g in the
rational parametrization (1) is

q(z) = 5506034827600 z'2 — 4608031295324 7' — 192908794368 z° + 25693318717857 2°
+ 4774492660608 7 — 17188212283956 z° — 23438418515712 2°
+ 64967482316484 z* — 11285164470528 z° — 11887630039728 z* + 296990121024,

Recall that the algebraic degree of a point x* in .% is the degree of the minimal algebraic exten-
sion of the ground field (here the rational numbers) required to represent x*. The algebraic degree
depends on the size of the pencil A but also on the rank r of A(x*). With (m,n,r) = (4,2,3) and



Downloaded by [Australian Catholic University] at 22:47 07 August 2017

Optimization Methods & Software 11

Figure 2. Quartic curve with sample points on the boundary of its spectrahedron.

generic data, the algebraic degree is 12, cf. [15, Table 2], which indeed coincides with the degree
of the exact representation of x* computed by SPECTRA.

4.5 Polynomial SOS

Deciding whether a multivariate real polynomial is non-negative is difficult in general. A suf-
ficient condition, or certificate for non-negativity, is that the polynomial can be expressed as
an SOS of other polynomials. Finding a polynomial SOS decomposition amounts to finding a
point in a specific spectrahedron called Gram spectrahedron, see, for example, [5] and references
therein.

Consider the homogeneous ternary quartic

4 3., 4 2 2 2.2 3 3, 4
) = u] + uuy + uy — 3ujuouz — dujusuz + 2uiusy + uguy + usuy + us.

The polynomial f belongs to a series of examples provided by C. Scheiderer in [18] to answer
(in the negative) the following question by B. Sturmfels: let f be a polynomial with rational
coefficients which is an SOS of polynomials with real coefficients; is it an SOS of polynomials
with rational coefficients? Scheiderer’s counterexamples prove that, generally speaking, there is
no hope in obtaining non-negativity certificates over the rationals. However, certificates exist in
some algebraic extension of the field of rational numbers.

In the graded reverse lexicographic ordered monomial basis, the Gram matrix of f is the matrix

1 0 X1 0 =3/2—x x3
0 —2)C1 1/2 X2 -2 — X4 —X5
_ X1 1/2 1 X4 0 X6
AW = 0 X Xy —2x3 42 Xs 1/2
—3/2—X2 —2—)(74 0 X5 —2x6 1/2
| X3 —X5 X6 1/2 1/2 1 _
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depending linearly on 6 real parameters. The Gram spectrahedron . = {x € R®: A(x) > 0}
parametrizes the set of all SOS decompositions of f. We deduce by the discussion above that
- does not contain rational points. In particular, its interior is empty.

Let us use SPECTRA to compute points in .%” and hence to get positivity certificates for f:

> A := Matrix([[1,0,x1,0,-3/2-x2,x3],
[0,-2%x1,1/2,x2,-2-x4,-x5], [x1,1/2,1,x4,0,x6],
[0,x2,x4,-2%x3+2,%x5,1/2],
[-3/2-%x2,-2-%x4,0,x5,-2%%6,1/2]1,
[X3I_XSIX6I1/2I1/271]]):
> SolveLMI(A, {rnk, deg, par});
[[[x1 = [..], X2 = [+.], X3 = [e.], X4 =[..], X5 =1[..],
X6 = [..]11,
rnk = 2, deg = 3,
par [8%¥2"3+8%z+1, 24%xz"2-8, [l6%z+3, -24xz"2+8,
8x2"2+6%x2+8, -16%2"2+6%2z+16, -16%z2-3, 16%z2+3]]]

We obtain an irrational point x € .¥ whose coordinates are algebraic numbers of degree 3, and
which belongs to the finite set

162+3 —2472+8 872+67+8 —1622+6z+16 —16z—3 16z+3
2472 — 87 2472 —8 ° 2472—8 2472 — 8 T 2472 — 872472 — 8

8z3—8z—1:0}

At this point, the Gram matrix A has rank 2, and hence f is an SOS of 2 polynomials.
Let us compute more non-negativity certificates of rank 2:

> SolveLMI(A, {rnk,deg,par,all},[2]);

In addition to the point already obtained above, we get another point. The user can compare this
output with [18, Ex.2.8]: it turns out that these are the only 2 points of rank 2. Other points in
the Gram spectrahedron have rank 4 and they are convex combinations of these 2.

4.6 Application to computer arithmetic

In the paper [3] the authors need to check the following inequality in order to derive bounds
for roundoff errors of floating-point computation performed on complex numbers ag + iby and
a) + ib 1.

32
7<a3 + b3) (@} + b}) — (2apa; — boby)* — (2aph; + 2a1by)* > 0. 3)

Relaxing positivity to SOS, as in the previous section, allows to derive an SOS-certificate using
SPECTRA. The dense Gram matrix associated to the polynomial in (3) has size 10 x 10 and it is
linear in 21 variables. The current implementation of SPECTRA allows to solve the associated LMI
in 5 hours. However, exploiting the sparsity of the polynomial in (3) allows to reduce the LMI
description to a 4 x 4 linear matrix, and the computation to a few seconds.
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5. Performance

5.1 Exponential bit-size spectrahedron

For a given n € N, consider the spectrahedron

ﬂ,:{xew:[l 2}50,[1 xl]zo,...,{l x”—l]zo}.
2 x X1 X Xn—1  Xn

For every x* € ., it holds x* > (x* )2 > ... > (x})®"' > 2%, which shows that exponentially
many bits are required to represent a point. It is elementary to check that each of the above n
matrices of size 2 can have rank 1, and hence that we can compute a point of rank 7 as follows:

> with(LinearAlgebra):

> A:=DiagonalMatrix([<<1,2>|<2,x1>>,<<1,x1>|<x1l,x2>>,<<1,x2>|
<xX2,x3>>,..]1):

> SolveLMI(A,{},[n]);

2n
n

eties, a number growing exponentially with n. For example there are 12870 = ( 8) incidence
varieties to test to solve our problem for n=28. Hence we could expect SPECTRA to perform
poorly on this example. However, on our standard desktop PC equipped with Intel i7 processor
at 2.5 GHz and 16 GB RAM, we were able to handle spectrahedra of size 2n =10 in 29 s, and of
size 2n=12in 505 s.

Recall from Section 2 that SPECTRA examines iteratively a family of (':1) = ( ) incidence vari-

16

5.2 Random spectrahedra

Finally, we report on randomly generated examples. The rational entries of A are generated as
quotients of integers drawn uniformly in the interval [—100, 100]. Here is the script we used to
generate a random symmetric pencil given the number n of variables and the size m:

> var:=[seq(cat('x’,1i),i=1l..n)]:
> A:=Matrix(m,m):
> for i from 1 to m do
for j from i to m do
A[i,j]:=randpoly(var, degree=1, dense,
coeffs=rand(-100..100)):
A[J,1]1:=A[1,]];
od:
od:

For each instance, given the expected rank r, we execute the command
> SolveLMI(A,{},[r]);

For m=2, r=1 and values of n ranging from 30 to 100, we obtain the timings reported in
Figure 3. This corresponds to spectrahedra whose boundaries belong to determinantal varieties
of increasing dimension. Moreover, the singularity locus of the determinant has positive dimen-
sion, it is a linear subspace of co-dimension 3. We observe a polynomial dependence of the
computational time as a function of the number of variables, with exponent around 3.

When m=3, r=m—1=2 and values of n ranging from 30 to 80, we obtain the timings
reported in Figure 4, depending polynomially on n with an exponent around 4.
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10145 - N

10" 1 y

time (seconds)

101.6 1018 102
number of variables

Figure 3. Timings for random instances of size m =2 and rank r = 1, as a function of the number of variables n.

10% ¢ :

time (seconds)

10" ¢ :

101.5 101.6 101.7 101,8 101.9
number of variables

Figure 4. Timings for random instances of size m = 3 and rank » = 2, as a function of the number of variables 7.

6. Input and output syntax

6.1 Input

The calling sequence of function SolveLMT is as follows:
> SolveLMI(A, options, ranks);
where

e A is a symmetric matrix of size m with rational coefficients, depending affinely on n variables;
e options (optional) is a set that can contain the following keywords:
all :compute as many solutions as possible, which can be computationally demanding; when
this option is not specified, the algorithm is stopped as soon as one solution is computed,
which is typically much faster;
rnk : return the rank of A at every computed solution;
par : return the rational univariate parametrization of every computed solution;
deg : return the algebraic degree of every computed solution;
e ranks (optional) is a list of non-negative integers corresponding to expected ranks of com-
puted solutions. The default value is [0,1,...,m — 1]. The algorithm is run for each value r
in ranks by solving the quadratic system of equations

AWY () =0
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for a vector x and a matrix Y (y) with m rows and m — r columns whose entries are stored in a
vector y. It may happen that the rank of A(x) at a computed solution x is strictly less than r.

6.2 OQutput

Let us denote by x,x,,. .. ,x, the variables on which matrix A depends affinely. They are gath-
ered in a vector x € R". When the input argument options is empty, the output returned by
SolvelMT is

e cithter the empty list [ ] in which case .% is empty, or
e arational enclosure of a single point x € .#, in the form

> SolvelLMI (A)
[[x1 = [al, bl], %2 = [a2, b2], ..., xn = [an, bn]]]

where a;,b; are rational numbers, displayed as ratios of integers. This means that each coor-
dinate x; belongs to the interval [a;,b;] ensuring a floating point approximation of x valid to a
number of digits equal to the Maple environment variable Digits. When @; = b; this implies
that x; is a rational number.

When options contains the keyword all, more points can be returned, in the form of a list

> out := SolveLMI(A, {all})
[[x1 = [all, bl1l], x2 = [al2, bl12], ..., xn = [aln, bln]],
[x1 = [a21l, b21], x2 [a22, b22], ..., Xn [a2n, b2n]],
oo

such that nops (out) is the number of computed points, out [ 1] is the first point,out[2] is
the second point, etc.
When options contains the keyword rnk, the rank of A at x is returned:

> SolveLMI (A, {rnk})
[[x1 = [al, bl], x2 = [a2, b2], ..., Xn = [an, bn], rnk = r]]

These keywords and the following ones can be freely combined:

> SolveLMI(A, {all, rnk})
[[x1 = [all, bl1l], x2 = [al2, bl2], ...,

xn = [aln, bln], rnk = rl],
[x1 = [a21, b21], x2 = [a22, b22], ...,
xn = [a2n, b2n], rnk = r2],

e ]

When options contains the keyword par, a rational univariate parametrization of x is
returned:

> SolveLMI(A, {par})
[[x1=[al,bl], x2=[a2,b2], ..., xn=[an,bn],
par=[q,q90,[q9l,q92,...,an]]]
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This parametrization is such that ¢,qo,q1,42,--.,q, are univariate polynomials with integer
coefficients such that x belongs to the finite set

{(%&)qx@ (@)

, R : =0, Ct.
7@ 900 (]o(Z)> 1@ =0.z¢ }

The intervals [a;, b;] are provide to isolate the computed point from this set of points.
When options contains the keyword deg, the degree of the polynomial ¢ in the rational
univariate parametrization of each computed point x is also returned:

> SolveLMI (A, {deg})
[[x1 = [al, bl], x2 = [a2, b2], ..., %Xxn = [an, bn], deg = d]]
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