

Oihan Allegret¹, Jean-Christophe Orlianges¹, Alexandre Boulle², Richard Mayet^{2,} Aurelian Crunteanu¹

¹XLIM Research Institute, CNRS/ University of Limoges, France

²IRCER, CNRS/ University of Limoges, France

Contact: oihan.allegret@unilim.fr

Introduction

- VO_2 -reversible insulator to metal transition (IMT) at 68C° \bullet
- Transition triggered optically thermally or **electrically**
- Applications in memristors, sensors and electrical oscillators
- **Structural characterization of VO₂ µ-structures**
- **Fabrication of 2 terminal devices**

Temperature (°C)

[1] Soo Kim et al: doi.org/10.1021/cg20

Schematic of the furnace, probability of nucleation

[1] Soo Kim et al: doi.org/10.1021/cg201488w

Modified vapor-liquid-

solid method using

 V_2O_5 powder

• VO₂ wire growth on

silica substrates

Electrical and structural

charcterisations

Device fabrication

• 2 terminal devices **20/500** nm Ti/Au • 5,10 and 15-µm gaps

Structural and microstructural properties

Nanowires

Electrical properties

Reciprocal space map: splitting of the 011 peak \rightarrow 2 deformation states in M1

Oscillations obtained on thin films 2T devices

Conclusion

- Reliable method to synthetize nanowires
- Structural properties of VO₂ micro-structures
- NDR on nanowire and films integrating 2T devices
- IMT engineering through doping, strain modification
- Coupling oscillators → phase encoded logic
- Neuromorphic applications

