[58,29,14] HERMITIAN SELF-DUAL CODES OVER GF(4)



NAME

C4H_58

MINIMUM DISTANCE

14

WEIGHT ENUMERATOR

AUTOMORPHISM GROUP ORDER

COMMENTS AND REFERENCES

This code is obtained from the construction (f1;1,25).

GENERATOR MATRIX

[ 1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,w,w,w^2,w,w,w^2,w^2,0,1,w^2,w,w^2,w^2,1,1,0,w,0,w,0,w^2,1,1,1,0,w,w,1,1,w,w,w^2,w,1,1,1,0,0,0,1,w,w,1,
0,1,0,0,0,0,0,0,0,0,0,1,w^2,w,0,w,0,1,1,w^2,1,w^2,1,1,w^2,0,0,1,w,1,w,w^2,w,w,1,w^2,w,0,1,1,w,w^2,0,1,1,w^2,w^2,0,w^2,0,1,0,w,w^2,1,w^2,0,w^2,
1,1,w,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,w,w,w^2,w,w,w^2,w^2,0,1,w^2,w,w^2,w^2,1,1,0,w,0,w,0,w^2,1,1,1,0,w,w,1,1,w,w,w^2,w,1,1,1,0,1,w^2,
1,0,0,w^2,0,1,0,0,0,0,0,0,0,0,0,1,w^2,w,0,w,0,1,1,w^2,1,w^2,1,1,w^2,0,0,1,w,1,w,w^2,w,w,1,w^2,w,0,1,1,w,w^2,0,1,1,w^2,w^2,0,w^2,0,1,0,0,1,
0,0,1,w^2,1,1,w,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,w,w,w^2,w,w,w^2,w^2,0,1,w^2,w,w^2,w^2,1,1,0,w,0,w,0,w^2,1,1,1,0,w,w,1,1,w,w,w^2,w,1,0,
w,w^2,0,1,1,0,0,w^2,0,1,0,0,0,0,0,0,0,0,0,1,w^2,w,0,w,0,1,1,w^2,1,w^2,1,1,w^2,0,0,1,w,1,w,w^2,w,w,1,w^2,w,0,1,1,w,w^2,0,1,1,w^2,w^2,0,w,1,
1,1,1,0,0,0,1,w^2,1,1,w,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,w,w,w^2,w,w,w^2,w^2,0,1,w^2,w,w^2,w^2,1,1,0,w,0,w,0,w^2,1,1,1,0,w,w,1,1,w^2,w^2,
1,w^2,w,1,w,w^2,0,1,1,0,0,w^2,0,1,0,0,0,0,0,0,0,0,0,1,w^2,w,0,w,0,1,1,w^2,1,w^2,1,1,w^2,0,0,1,w,1,w,w^2,w,w,1,w^2,w,0,1,1,w,w^2,0,1,1,0,
w^2,w^2,w^2,w^2,1,1,1,0,0,0,1,w^2,1,1,w,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,w,w,w^2,w,w,w^2,w^2,0,1,w^2,w,w^2,w^2,1,1,0,w,0,w,0,w^2,1,1,1,0,1,w,
0,1,1,0,1,w^2,w,1,w,w^2,0,1,1,0,0,w^2,0,1,0,0,0,0,0,0,0,0,0,1,w^2,w,0,w,0,1,1,w^2,1,w^2,1,1,w^2,0,0,1,w,1,w,w^2,w,w,1,w^2,w,0,1,1,1,w,
0,0,1,w,w^2,w^2,w^2,w^2,1,1,1,0,0,0,1,w^2,1,1,w,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,w,w,w^2,w,w,w^2,w^2,0,1,w^2,w,w^2,w^2,1,1,0,w,0,w,0,w^2,1,0,
w,w^2,1,w,0,1,1,0,1,w^2,w,1,w,w^2,0,1,1,0,0,w^2,0,1,0,0,0,0,0,0,0,0,0,1,w^2,w,0,w,0,1,1,w^2,1,w^2,1,1,w^2,0,0,1,w,1,w,w^2,w,w,1,w^2,w^2,0,
w^2,1,1,0,0,0,1,w,w^2,w^2,w^2,w^2,1,1,1,0,0,0,1,w^2,1,1,w,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,w,w,w^2,w,w,w^2,w^2,0,1,w^2,w,w^2,w^2,1,1,0,w,w,1,
w,0,w^2,0,w,w^2,1,w,0,1,1,0,1,w^2,w,1,w,w^2,0,1,1,0,0,w^2,0,1,0,0,0,0,0,0,0,0,0,1,w^2,w,0,w,0,1,1,w^2,1,w^2,1,1,w^2,0,0,1,w,1,w,w^2,1,0,
1,1,w,1,w^2,1,1,0,0,0,1,w,w^2,w^2,w^2,w^2,1,1,1,0,0,0,1,w^2,1,1,w,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,w,w,w^2,w,w,w^2,w^2,0,1,w^2,w,w^2,w^2,0,w^2,
0,1,1,0,w,0,w^2,0,w,w^2,1,w,0,1,1,0,1,w^2,w,1,w,w^2,0,1,1,0,0,w^2,0,1,0,0,0,0,0,0,0,0,0,1,w^2,w,0,w,0,1,1,w^2,1,w^2,1,1,w^2,0,0,1,1,0,
1,1,0,w^2,1,1,w,1,w^2,1,1,0,0,0,1,w,w^2,w^2,w^2,w^2,1,1,1,0,0,0,1,w^2,1,1,w,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,w,w,w^2,w,w,w^2,w^2,0,1,w,w,
1,w^2,1,0,0,1,1,0,w,0,w^2,0,w,w^2,1,w,0,1,1,0,1,w^2,w,1,w,w^2,0,1,1,0,0,w^2,0,1,0,0,0,0,0,0,0,0,0,1,w^2,w,0,w,0,1,1,w^2,1,w^2,1,1,w^2,1,
w^2,w^2,w,w,1,1,0,w^2,1,1,w,1,w^2,1,1,0,0,0,1,w,w^2,w^2,w^2,w^2,1,1,1,0,0,0,1,w^2,1,1,w,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,w,w,w^2,w,w,0,w,
w,w,w^2,1,1,w^2,1,0,0,1,1,0,w,0,w^2,0,w,w^2,1,w,0,1,1,0,1,w^2,w,1,w,w^2,0,1,1,0,0,w^2,0,1,0,0,0,0,0,0,0,0,0,1,w^2,w,0,w,0,1,1,w^2,w^2,w^2,
w,w^2,0,w,w^2,w^2,w,w,1,1,0,w^2,1,1,w,1,w^2,1,1,0,0,0,1,w,w^2,w^2,w^2,w^2,1,1,1,0,0,0,1,w^2,1,1,w,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,w,w^2,w^2,
1,w^2,w^2,w^2,w,w,w^2,1,1,w^2,1,0,0,1,1,0,w,0,w^2,0,w,w^2,1,w,0,1,1,0,1,w^2,w,1,w,w^2,0,1,1,0,0,w^2,0,1,0,0,0,0,0,0,0,0,0,1,w^2,w,0,w,0,w^2,
1,1,w^2,w^2,w,w^2,0,w,w^2,w^2,w,w,1,1,0,w^2,1,1,w,1,w^2,1,1,0,0,0,1,w,w^2,w^2,w^2,w^2,1,1,1,0,0,0,1,w^2,1,1,w,1,1,1,0,0,0,0,0,0,0,0,0,0,1,w^2,
w,w,0,w^2,1,w^2,w^2,w^2,w,w,w^2,1,1,w^2,1,0,0,1,1,0,w,0,w^2,0,w,w^2,1,w,0,1,1,0,1,w^2,w,1,w,w^2,0,1,1,0,0,w^2,0,1,0,0,0,0,0,0,0,0,0,1,1,0,
0,0,1,w^2,1,1,w^2,w^2,w,w^2,0,w,w^2,w^2,w,w,1,1,0,w^2,1,1,w,1,w^2,1,1,0,0,0,1,w,w^2,w^2,w^2,w^2,1,1,1,0,0,0,1,w^2,1,1,w,1,1,1,0,0,0,0,0,0,0,0,
w^2,w,1,0,w,w,0,w^2,1,w^2,w^2,w^2,w,w,w^2,1,1,w^2,1,0,0,1,1,0,w,0,w^2,0,w,w^2,1,w,0,1,1,0,1,w^2,w,1,w,w^2,0,1,1,0,0,w^2,0,1,0,0,0,0,0,0,0,1,
0,0,0,0,0,0,1,w^2,1,1,w^2,w^2,w,w^2,0,w,w^2,w^2,w,w,1,1,0,w^2,1,1,w,1,w^2,1,1,0,0,0,1,w,w^2,w^2,w^2,w^2,1,1,1,0,0,0,1,w^2,1,1,w,1,1,1,0,0,0,0,
0,0,0,1,w^2,w,1,0,w,w,0,w^2,1,w^2,w^2,w^2,w,w,w^2,1,1,w^2,1,0,0,1,1,0,w,0,w^2,0,w,w^2,1,w,0,1,1,0,1,w^2,w,1,w,w^2,0,1,1,0,0,w^2,0,1,0,0,0,0,
0,0,0,0,0,0,0,1,w^2,w,0,w,0,1,1,w^2,1,w^2,1,1,w^2,0,0,1,w,1,w,w^2,w,w,1,w^2,w,0,1,1,w,w^2,0,1,1,w^2,w^2,0,w^2,0,1,0,w,w^2,1,w^2,w^2,w^2,0,0,0,0]



Main | GF(2) | GF(3) | GF(4) euclidian | GF(4) hermitian | GF(5) | GF(7)


gaborit@unilim.fr