Resolution of Turning Point 

The resolution of turning points is in two versions: Let A0 denote the `*`(leading, `*`(coefficient, `*`(of, `*`(A(variable, parameter))))) w.r.t. the parameter.






 

> A0 := Matrix(3, 3, [0, 1, 0, 0, 0, 1, 0, 0, x]); 1; EigenValues := Eigenvalues(A0); 1; ramification, Tafter, New_leading_coeff, Computation_time := TurnPtParam1(A0, x, 10); 1; Tbefore, ramification, T...
A0 := Matrix(3, 3, [0, 1, 0, 0, 0, 1, 0, 0, x]); 1; EigenValues := Eigenvalues(A0); 1; ramification, Tafter, New_leading_coeff, Computation_time := TurnPtParam1(A0, x, 10); 1; Tbefore, ramification, T...
 

 

 

 

Matrix(%id = 18446744078299108166)
Vector[column](%id = 18446744078299110806)
1, Matrix(%id = 18446744078299080454), Matrix(%id = 18446744078299072382), 0.39e-1
Matrix(%id = 18446744078325007414), 1, Matrix(%id = 18446744078299072502), Matrix(%id = 18446744078317397766), 0.38e-1 (3.1)
 

> A0 := Matrix(%id = 18446744078460961246); 1; EigenValues := Eigenvalues(A0); 1; ramification, Tafter, New_leading_coeff, Computation_time := TurnPtParam1(A0, x, 10); 1; Tbefore, ramification, Tafter, ...
A0 := Matrix(%id = 18446744078460961246); 1; EigenValues := Eigenvalues(A0); 1; ramification, Tafter, New_leading_coeff, Computation_time := TurnPtParam1(A0, x, 10); 1; Tbefore, ramification, Tafter, ...
 

 

 

 

Matrix(%id = 18446744078317398966)
Vector[column](%id = 18446744078317389574)
1, Matrix(%id = 18446744078317384758), Matrix(%id = 18446744078317368494), 0.10e-1
Matrix(%id = 18446744078317369694), 1, Matrix(%id = 18446744078317368614), Matrix(%id = 18446744078317355126), 0.12e-1 (3.2)
 

> A := Matrix(2, 2, [0, 1, `*`(`^`(x, 5)), 0]); 1; EigenValues := Eigenvalues(A0); 1; ramification, Tafter, New_leading_coeff, Computation_time := TurnPtParam1(A0, x, 10); 1; Tbefore, ramification, Taft...
A := Matrix(2, 2, [0, 1, `*`(`^`(x, 5)), 0]); 1; EigenValues := Eigenvalues(A0); 1; ramification, Tafter, New_leading_coeff, Computation_time := TurnPtParam1(A0, x, 10); 1; Tbefore, ramification, Taft...
 

 

 

 

Matrix(%id = 18446744078317356566)
Vector[column](%id = 18446744078317351390)
1, Matrix(%id = 18446744078317352950), Matrix(%id = 18446744078317342222), 0.11e-1
Matrix(%id = 18446744078302937806), 1, Matrix(%id = 18446744078317342342), Matrix(%id = 18446744078302917086), 0.12e-1 (3.3)
 

> A0 := Matrix(%id = 18446744078460962326); 1; EigenValues := Eigenvalues(A0); 1; ramification, Tafter, New_leading_coeff, Computation_time := TurnPtParam1(A0, x, 10); 1; Tbefore, ramification, Tafter, ...
A0 := Matrix(%id = 18446744078460962326); 1; EigenValues := Eigenvalues(A0); 1; ramification, Tafter, New_leading_coeff, Computation_time := TurnPtParam1(A0, x, 10); 1; Tbefore, ramification, Tafter, ...
 

 

 

 

Matrix(%id = 18446744078302918406)
Vector[column](%id = 18446744078302920326)
2, Matrix(%id = 18446744078306896222), Matrix(%id = 18446744078306888030), 0.44e-1
Matrix(%id = 18446744078306875502), 2, Matrix(%id = 18446744078314846198), Matrix(%id = 18446744078314760182), 0.42e-1 (3.4)
 

>